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We apply the dynamic model for failures to a living organism under periodic stress and study how the health
status of the organism evolves. It is found that without healing, the average fraction of intact cells decays either
stepwise to zero or to a constant value far from zero, depending on the peak value of the periodic stress. As the
parameter measuring the healing probability is raised from zero, the fraction exhibits oscillating behavior,
reminiscent of periodic synchronization. The power spectrum at the stress frequency at first increases with the
healing parameter, then decreases, which may be called healing resonance. We also study the time evolution of
the system in the case that the healing parameter varies periodically with time and observe a transition from the
unhealthy state to the healthy one as the healing frequency increases. This suggests how to adjust the frequency
of medical treatment to the optimum.
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I. INTRODUCTION

Biological systems, consisting of cells, may be led into
failures, for example, as a consequence of disease. Under the
stress due to such an external load, some of the cells may fail
or die and the corresponding extra stress, previously handled
by those �now failed� cells, should be transferred to other
�intact� cells. This gives rise to an increase of the stress on
the remaining cells and may in turn induce additional failures
of cells. In this manner local stress arising from an external
load tends to produce avalanches of cell failures, possibly
resulting in the failure of the whole system. On the other
hand, there may also exist an ability to heal: Failed cells may
be repaired or new cells may be regenerated in the place of
failed ones. Such an ability to heal, as a characteristic of
biological systems, makes a distinction from breakdown phe-
nomena in other systems, described by fiber bundle models
�1–3�.

These features are incorporated in the recently proposed
dynamic model for failures, which exhibits many desirable
properties as to the evolution to the stationary state and the
lifetime under a given applied stress �4�. For example, the
dynamic model gives a characteristic time evolution that the
system tends to resist stress for a rather long time, followed
by a sudden failure with some fraction of cells surviving; this
is called the “unhealthy” state. If such breakdown does not
occur, the state is regarded as “healthy.” It also shows that
the critical stress beyond which the system breaks down in-
creases rapidly as the healing ability is introduced, indicative
of the importance of healing in biological systems. With
these features, the model gives a good description of the time
course of degenerative disease progression such as diabetes

�5�, Alzheimer’s disease �6�, and possibly AIDS �7� and
might be used as a starting point to understand failure phe-
nomena in pathology. Here an interesting application of the
model would be to study the effects of time-varying stress, to
which living organisms are usually subject. Of particular in-
terest is the case of periodic stress, in view of the environ-
ments or external doses changing with periods of, for ex-
ample, a day or a year.

This paper studies the behavior of a living organism under
periodic stress through the use of the dynamic model for
failures. We introduce the healing parameter, which mea-
sures the cell regeneration ability, and examine the behavior
as the healing parameter is varied. In the absence of healing,
the average fraction of intact cells is found to decay stepwise
either to zero or to a constant value far from zero, depending
on the peak value of the periodic stress. When the healing
parameter is raised from zero, the fraction exhibits oscillat-
ing behavior, which is reminiscent of periodic synchroniza-
tion. The power spectrum at the stress frequency at first in-
creases with the healing parameter, then decreases,
manifesting resonance behavior. We also study the time evo-
lution of the system in the case that the healing parameter
varies periodically with time; observed is a transition from
the unhealthy state to the healthy one as the healing fre-
quency increases. This gives an interesting criterion of ad-
justing the frequency of medical treatment to the optimum.

This paper consists of five sections: Section II describes
briefly the dynamic model for failures for completeness. In
Sec. III we integrate numerically the equation of motion with
periodic stress and compute corresponding power spectra,
whereas Sec. IV presents the interplay between stress and
healing and discusses its implication for medication. Finally,
a summary is given in Sec. V.

II. DYNAMIC MODEL FOR FAILURES

We consider an organism consisting of N cells under ex-
ternal stress characterized by load F which may vary with
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time t. Each cell has its own threshold and endures stress
below the threshold. The cell may become dead, however, if
the threshold is exceeded. We assign “spin” variables to
these in such a way that si=−1�+1� for the ith cell alive
�dead�. The state of the organism is then described by the
configuration of all the cells, s��s1 ,s2 , . . . ,sN�. The total
number N− of alive cells is related with the average spin s̄
�N−1� jsj via

N− = �
j=1

N
1 − sj

2
=

N

2
�1 − s̄� , �1�

and we are interested in how N− evolves in time as well as its
stationary value. The total stress on the ith cell can then be
written in the form

�i = f + �
j

Vij
1 + sj

2
, �2�

where f =F /N is the direct stress due to the external load and
Vij represents the stress transferred from the jth cell �in case
that it is dead�. The breaking of the ith cell with tolerance hi
is determined according to

�i � hi Þ si = − 1, �i � hi Þ si = + 1,

which, in terms of the local field Ei�s����i−hi��1− s̄� /2, can
be simplified as

siEi � 0. �3�

This determines the stationary configuration at which the or-
ganism eventually arrives.

For a more realistic description of the time evolution, we
also take into consideration the uncertainty �“noise”� present
in real situations, which may arise from imperfections, ran-
dom variations, and other environmental influences. We thus
begin with the conditional probability that the ith cell is dead
at time t+�t, given that it is alive at time t:

p�si = + 1,t + �t�si = − 1,t;s�,t − td� =
�t

2tr
�1 + tanh �Ei�� ,

�4�

where s���s1� ,s2� , . . . ,sN� � represents the configuration of the
organism at time t− td and Ei��Ei�s�� is the local field at time
t− td. Note the two time scales td and tr here: td denotes the
time delay during which the stress is redistributed among
cells while the refractory period tr sets the relaxation time �or
lifetime�. The “temperature” T��−1 measures the width of
the threshold region of the cells or the noise level: In the
noiseless limit �T=0� the factor �1+tanh�Ei�� /2 in Eq. �4�
reduces to the step function ��Ei��, yielding the stationary-
state condition given by Eq. �3�. We also assign the nonzero
conditional probability of the ith cell being repaired �or re-
generated� given that it is dead at time t, according to

p�si = − 1,t + �t�si = + 1,t;s�,t − td� =
�t

t0
, �5�

where t0 is the time necessary for cell regeneration. Equa-
tions �4� and �5� can be combined to give a general expres-

sion for the conditional probability p�si� , t+�t �si , t ;s� , t− td�,
which, in the limit �t→0, can be expressed in terms of the
transition rate:

p�− si,t + �t�si,t;s�,t − td� = wi�si;s�,t − td��t . �6�

The transition rate is given by

wi�si;s�,t − td� =
1

2tr
�	a +

1

2

 + 	a −

1

2

si+

1 − si

2
tanh �Ei�� ,

�7�

where the healing parameter a� tr / t0 measures the regenera-
tion probability during the relaxation time.

The behavior of the organism is then governed by the
master equation, which describes the evolution of the joint
probability P�s , t ;s� , t− td� that the organism is in state s� at
time t− td and in state s at time t:

P�s,t + �t;s�,t − td� − P�s,t;s�,t − td�

= − �
s�

�p�s�,t + �t�s,t;s�,t − td�P�s,t;s�,t − td�

− p�s,t + �t�s�,t;s�,t − td�P�s�,t;s�,t − td�� . �8�

Thus we obtain the equation of motion in the form of a
non-Markov master equation. Here the conditional probabil-
ity for the whole organism is given by the product of that for
each cell:

p�s�,t + �t�s,t;s�,t − td� = �
i=1

N

p�si�,t + �t�si,t;s�,t − td� .

In the limit �t→0, Eq. �8� takes the differential form

d

dt
P�s,t;s�,t − 1� = − �

i

�wi�si;s��P�s,t;s�,t − 1�

− wi�− si;s��P�Fis,t;s�,t − 1�� , �9�

where time t has been rescaled in units of the delay time td,
the transition rate is given by wi�si ;s��� tdwi�si ;s� , t− td�
with wi�si ;s� , t− td� defined in Eq. �7�, and Fis��s1 ,s2 , . . . ,
−si ,si+1 , . . . ,sN�. Note that only those contributions of inter-
mediate configurations s� differing from s just by one cell are
retained; other configurations give higher-order contribu-
tions, which vanish in the limit �t→0. Then equations de-
scribing the time evolution of the relevant physical quantities
in general assume the form of differential-difference equa-
tions due to the retardation in the stress redistribution. In
particular, the average spin for the kth cell, mk�t��
sk�
��s,s�skP�s , t ;s� , t−1�, can be obtained from Eq. �9� by
multiplying sk and summing over all configurations:

d

dt
mk�t� = − 2
skwk�sk;s��� , �10�

where 
 � denotes the average over P�s , t ;s� , t−1�. Evalua-
tion of the average 
skwk�sk ;s���, with sk

2=1 noted, leads to
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d

dt
mk = 	1

2
− a
 − 	1

2
+ a
mk + � 1 − sk

2
tanh �Ek�� ,

�11�

where 	� tr / td gives the relaxation time �in units of td�.
To proceed further, we consider global load sharing

�GLS�—i.e., that the stress is distributed to every cell uni-
formly, leaving the case of local load sharing �LLS� to the
end of Sec. III. In the case of GLS, we have Vij =� j /N− and,
accordingly, �1− s̄��i=2f from Eq. �2�. The infinite-range na-
ture of GLS allows one to replace Ek� by its average 
Ek��
= f − �hk /2��1− m̄�t−1��, where it has been noted that s� is the
configuration at time t−1—i.e., 
s̄��=N−1� j
s̄ j��=N−1� jmj�t
−1�� m̄�t−1�. For convenience, we now rewrite Eq. �11� in
terms of the average number of living cells at time t. Defin-
ing the average living fraction xk��1−mk� /2 and the health
status x̄�N−1�kxk= �1− m̄� /2, we have, from Eq. �1�, 
N−�
=Nx̄ and thus obtain from Eq. �11� the equation of motion
for the average living fraction for the kth cell:

	
d

dt
xk�t� = a − 	1

2
+ a
xk�t� −

1

2
xk�t�tanh ��f − hkx̄�t − 1�� ,

�12�

which is analyzed in the next section.

III. PERIODIC STRESS

We first describe the mechanism how the organism
reaches its stationary state under constant �direct� stress. In
the noiseless limit �T=0�, to which this work is devoted for
simplicity, we consider two cases according as f is greater
than hkx̄�t−1� or less and write Eq. �12� accordingly: When
f �hkx̄�t−1�, the external stress on the cell k is so strong that
it dies according to

	
d

dt
xk�t� = a − �1 + a�xk�t� , �13�

which yields the solution for the dying process:

xk�t� =
a

1 + a
+ �xk�t0� −

a

1 + a
�e−�1+a��t−t0�/	. �14�

Note that in the presence of healing �a�0� the cell may not
become completely dead on the average. Namely, some of
the N cells in the organism may still survive, giving a non-
zero value of the average living fraction �xk�0�. In the real
situation, however, the healing parameter a is not constant
but dependent on, e.g., the fraction of living cells. Namely, it
is likely that a reduces to zero as xk decreases below a certain
value. This point will be further elaborated on at the end of
this section in such a way that the healing parameter a de-
pends on the health status. For the moment, however, we
concentrate on the case of constant a for simplicity.

On the other hand, in case that f �hkx̄�t−1�, Eq. �12�
reads

	
d

dt
xk�t� = a − axk�t� , �15�

which represents the cell regeneration process. The corre-
sponding solution is given by

xk�t� = 1 + �xk�t0� − 1�e−a�t−t0�/	. �16�

Obviously, there is no regeneration process in the absence of
healing, so that the cell is either dead or alive. These solu-
tions demonstrate that each cell reaches its stationary state
rather quickly, unless the relaxation time 	 is very long. The
stationary state is determined by the external load, tolerance
of the cell, and the health status of the organism at t−1. This
in turn determines the health status x̄�t� at time t, according
to x̄�t�=N−1�kxk�t�.

We now consider the case that the organism suffers peri-
odic stress of the following form:

f�t� =
f0

2
�1 + sin 
t� , �17�

with 
 being the frequency of the stress �8�. If the period
T=2� /
 of the stress is sufficiently long compared with the
relaxation time 	, the equation of motion �12� would still be
valid, and we numerically integrate this equation in order to
explore the time evolution of the system. We point out here
that the results obtained via integration are in perfect agree-
ment with those obtained from direct Monte Carlo simula-
tions �9�. We consider the Gaussian distribution of the toler-

ance �hi� with unit mean h̄=1 and standard deviation �
=0.2, in an organism of N=104 cells. Other distributions in-
cluding the uniform distribution and the Weibull distribution
have also been considered, only to give essentially the same
results. Specifically, we use 20 different configurations of the
tolerance distribution and set the relaxation time 	=5 and the
period of stress T=128, with the time step 
t=0.1. These
parameter values have been varied; this yields no qualitative
difference as far as ac responses are concerned.

Figure 1 displays the health status of the organism for two
values of peak stress f0, with the period T=128 or frequency

=0.049. To help one to understand this figure, we briefly

FIG. 1. The average fraction x̄ of living cells versus time t �in
units of the delay time� for several values of the healing parameter
a. The organism is suffering the sinusoidal stress given by Eq. �17�,
with the peak stress f0= �a� 0.66 and �b� 0.74 and period T=128.
There is no noise �T=0�, and the values of tolerance hi are distrib-

uted according to the Gaussian distribution with unit mean h̄=1 and
standard deviation �=0.2.
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mention the behavior of the same system under constant
stress �4�. The critical stress, above which breakdown occurs
eventually, is given by fc=0.68 at a=0 and increases slightly
with a. When the stress f is much larger than fc, the organ-
ism remains always unhealthy �characterized by small
�steady-state� values of x̄, say, less than 0.5, and mostly close
to zero� even if a is increased. In the case that f is slightly
above the critical stress fc, the system becomes unhealthy at
small values of a, as expected. As a is increased further, the
system undergoes a transition to the healthy state �with the
steady-state value of x̄ larger than 0.5, mostly close to unity�.
The organism remains always healthy for stress smaller than
fc.

We now come back to Fig. 1. In the case that the peak
value f0 is smaller than fc and there is no healing, the aver-
age fraction x̄ of living cells decays stepwise and reaches a
steady state, as shown in Fig. 1�a�. When the healing param-
eter a is not zero, x̄ grows with time for f�t� being suffi-
ciently small and decreases for f�t� large enough. Accord-
ingly, x̄ becomes oscillating in time, while f oscillates
between 0 and f0. This oscillation becomes more dramatic
when f0 is larger than fc, as shown in Fig. 1�b�. When there
is no healing �see the solid line in the figure�, x̄ decreases to
zero. As a is raised from zero, the time average of x̄�t�also
increases, which can also be observed from the power spec-
trum P���, plotted in Figs. 2–4. The amplitude grows at first,
reaches a peak, and then reduces, as a is increased. This can
easily be understood by noting that x̄ recovers more for small
stress, as a becomes larger. However, at still larger values of
a, x̄ decreases less while the stress is large, resulting in a
smaller amplitude. When the amplitude of x̄�t� is large, the
behavior is apparently reminiscent of periodic synchroniza-
tion, which emerges, for example, in systems of coupled os-
cillators �10�.

To probe the time evolution in more detail, we compute
the power spectrum P��� for several values of the healing
parameter a. The result, obtained via the standard fast Fou-

rier transform on 8192 data points, is shown in Fig. 2. It is
observed that the power spectrum consists of sharp peaks at
frequency �=n
 with n integer—i.e., at the stress frequency
and its harmonics. Paying attention to the peaks at �=0 and

, one notice that unlike P�0�, which grows monotonically
with a, the power spectrum P�
� at the stress frequency
exhibits nonmonotonic behavior as a is varied.

These behaviors are manifested by the power spectrum
P�0� and P�
�, plotted against the healing parameter a, in
Figs. 3 and 4. Even though the stress is periodic, the state of
the organism is either healthy or unhealthy at small values of
a, depending on the peak stress f0 �see Fig. 3�. When f0 is
smaller than fc, the organism is always in the healthy state
and P�0� increases only slightly with a. At values of f0

slightly higher than fc, the system goes, as a is increased,
from the unhealthy state to the healthy one; this happens also
for the organism under constant stress. At still higher values
of f0, there seems to be no transition and the system remains
unhealthy. Figure 4 shows the power spectrum P�
� at the
stress frequency for the same values of f0 as in Fig. 3. It is
obvious that P�
� at first increases with the healing param-
eter a and reaches a maximum at a moderate value of a. As
a is raised further, P�
� then decreases, regardless of the
peak stress f0. Such nonmonotonic behavior in general char-
acterizes resonance in dynamical systems �11–13�, which has
also been studied in some biological systems �14,15�. The
resonancelike behavior here between the health status and

FIG. 2. Power spectrum P��� versus frequency � �in units of
the stress frequency 
� at several values of the healing parameter a.
The peak stress is given by f0=0.74.

FIG. 3. Power spectrum at zero frequency P�0� versus healing
parameter a for three values of the peak stress f0, shown in the
legend. The stress frequency is 
=0.049.

FIG. 4. Power spectrum at the stress frequency P�
� versus
healing parameter a for the same values of f0 and 
 as in Fig. 3.
The inset shows the plot for f0=0.66 in a finer scale.
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external stress arises from the interplay of the two time
scales associated with cell regeneration �healing� and exter-
nal stress �driving�. Namely, the periodic evolution of the
health status in response to the periodic external stress
changes as the healing parameter is varied; in particular, the
response follows more closely the external driving in the
presence of an appropriate amount of healing, which we thus
call healing resonance.

Heretofore we have assumed that the healing parameter a
is independent of the health status x̄. In the real situation, on
the other hand, the health status is likely to affect the healing
ability of the organism. Namely, as x̄ reduces, presumably so
does a. To investigate this possibility, we consider the case
that the healing parameter a assumes a simple form. Specifi-
cally, we take �i� a=amx̄ and �ii� a=am tanh cx̄ with am and c
being constants. In either case, as x̄ reduces to zero, the sys-
tem loses healing ability �a→0�. With these forms of the
healing parameter, we carry out the same calculations as
those for Figs. 3 and 4. Figure 5 presents the results for the
power spectra �a� P�0� at zero frequency and �b� P�
� at the
stress frequency. Here the values f0=0.77 and c=2.5 �in case
�ii�� have been used, whereas other parameters are the same
as those in Fig. 3. For small am, as expected, x̄�t� is observed
to vanish eventually after transient oscillations and the zero-
frequency power spectrum P�0� remains zero, manifesting
the complete failure of the organism. This behavior persists
up to a threshold value of am, beyond which P�0� grows
rapidly from zero and P�
� exhibits the healing resonance
behavior. The threshold value of am in general becomes
larger as a decreases more rapidly with x̄. Comparing the two
cases �i� �down triangles� and �ii� �open circles� in Fig. 5, one
may note that the reduction of a with x̄ is faster in the
former, leading to a larger threshold of am. The threshold
also tends to grow larger as the peak stress f0 is increased,
which is not shown here.

Before moving to the next section, we digress a little to
address the case of LLS, which may be more realistic in view
of the connectivity between cells. Since the system with LLS
is not analytically tractable, we resort to numerical simula-
tions. For this purpose, we place N�L2 cells at sites of a
square lattice of linear size L under periodic boundary con-
ditions. The algorithm to simulate the load transfer is as fol-
lows: �i� Initially, all cells are alive, each characterized by

spin s=−1 and subject to equal stress f =F /L2. �ii� At each
time step, the state of every cell gets updated according to
the probability given by Eq. �4� or �5�, depending on its
present state. The order of update is determined at random.
�iii� When a cell becomes dead �s= +1�, its load is trans-
ferred to living �intact� cells at the nearest and second nearest
sites—i.e., on the 2�2 square centered at the dead cell. Each
neighbor receives an equal amount of the excess load. If
there is no living cell on the first �2�2� square, the load is
transferred to the living cells on the second �4�4� square
and so on. If there is no living cell up to the tenth square of
linear size 20, the load is shared by all living cells in the
organism, each getting an equal amount. Obviously, this is
just one of many possible ways to realize LLS and we have
thus considered several other realizations of LLS, to find that
the behavior of the system does not change qualitatively. �iv�
A regenerated cell gets its load from nearby living cells in a
similar manner: Each living neighbor chosen gives an equal
amount of load to the regenerated cell, in such a way that the
load on the new �regenerated� cell is equal to the average
load of the chosen cells before the load transfer. �v� Measur-
ing the health status x̄ completes the time step, comprising
one Monte Carlo sweep.

Using the same parameter values and the same distribu-
tion of tolerances as the previous GLS case, we have per-
formed simulations, mostly in a system of size L=64. Figure
6�a� shows the average fraction x̄ of living cells versus time
t, obtained from Monte Carlo calculations for f =0.61 at T
=0. The three curves describe the system with LLS for the
healing parameter a=0 �solid line�, 0.05 �dash-dotted line�,
and 0.2 �dash–double-dotted line�, respectively. Also drawn,
for comparison, is the dotted line representing the system
with GLS for the same parameter values, which shows that
the system does not break down. On the other hand, the
system with LLS breaks down eventually, revealing that the
system with LLS becomes weaker. With larger healing abil-
ity, however, the system resists the stress longer before the
breakdown occurs and x̄ still takes a finite value, again mani-
festing the healing effects. The system with LLS thus has just
some quantitative differences compared with the case of
GLS, which may be summarized as follows �9�: In compari-
son with the case of GLS, the value of fc is smaller in the
system with LLS at the same values of a and T. Also found
is that better healing ability �i.e., a larger value of a� is re-
quired for the system with LLS to exhibit a transition to the
healthy state. These trends remain unchanged regardless of
the detailed scheme of LLS. We have also considered effects
of shortcuts along which the load is transferred and found
that as the number of pathways is increased, the critical
stress of the system also increases and the system thus be-
comes stronger.

The qualitative responses of the system to periodic stress
are also similar to those of the GLS system. Shown in Fig.
6�b� is the time evolution of x̄�t� for several values of the
healing parameter: a=0.05 �dash-dotted line�, 0.2 �dash–
double-dotted line�, and 0.5 �dashed line�, respectively. The
periodic stress is given by Eq. �17� with the peak stress f0
=0.61 and frequency 
=0.049. All data have been obtained
from a single initial configuration of tolerances, which is the

FIG. 5. Power spectrum �a� P�0� at zero frequency and �b� P�
�
at the stress frequency versus am, when the healing parameter is
given by a=amx̄ ��� and by a=am tanh cx̄ with c=2.5 ���. The
peak stress is f0=0.77, and other parameters are the same as those
in Fig. 3. The lines are merely guides to the eye.
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same as that used in �a�. As the healing parameter a is raised,
the time evolution of the system becomes similar to that of
the GLS system in Fig. 1, with quantitative differences. Fig-
ure 7 shows the power spectrum P�0� at zero frequency and
P�
� at the stress frequency versus the healing parameter a.
Note that the peak stress is again somewhat larger than the
critical stress fc=0.57 for the system under time-independent
external stress. It is manifested that the healing resonance
still appears even in the system with LLS.

IV. STRESS AND HEALING

With the information in Sec. III, we examine the interplay
between stress and healing, attending to the effects of peri-
odicity of either stress or healing. We first examine the be-
havior of the system in Sec. III as the stress frequency is
varied. Shown in Fig. 8 is the oscillatory time evolution of
the health status depending on the stress frequency for two
values of the healing parameter. The tolerance distribution is
the same as that in Fig. 1—i.e., the values of h̄ and � are the
same—and the peak stress is taken to be f0=0.74.

At the low stress frequency �
=0.049�, the health status
displays pronounced oscillations, without much regard to
healing. As the stress frequency is increased, both the period
and amplitude of oscillations of the health status are found to
reduce significantly. In this high-frequency case �
=1.96�,
the health status depends on healing in a crucial way: When
the healing parameter a is small, the health status x̄�t�, hav-
ing mostly low values, may not get recovered sufficiently in
the short �half� period and, accordingly, oscillates in the un-
healthy state �see Fig. 8�a��. For large a, on the other hand,
Fig. 8�b� shows that the health status can get improved rap-
idly in the time interval and does not decrease much during
the rest of the period. Thus x̄�t� oscillates in the healthy state.

This difference between the behaviors of Figs. 8�a� and
8�b� for 
=1.96 may also be understood in terms of the
power spectrum. Plotting P�0� for f0=0.74 at this frequency
�
=1.96�, which is similar to Fig. 3 and thus not shown
here, we observe a transition from the unhealthy to the
healthy states as a is increased. In this manner, the health
status depends on the stress frequency and the healing pa-
rameter as well as the peak stress, when the peak stress is a
bit larger than fc. It is of particular interest to note that stress
of higher �lower� frequency is better for health when healing
is more �less� active.

We next consider the case that healing �rather than stress�
varies periodically in time. Such periodic healing, related to
those effects of periodic stress, is commonly observed in
human life. For example, healing may be affected by medical
treatments or other activities, which are periodic in time. We
thus consider an organism under constant stress f , with the
healing parameter of the form

FIG. 6. �a� Average fraction x̄ of living cells versus time t at T
=0 and f =0.61, obtained from Monte Carlo calculations on a sys-
tem with local load sharing. Cells are arranged to form a square
lattice of size L=64, and the tolerance distribution is the same as
that in Fig. 1. The three curves correspond to three different values
of the healing parameter a, as shown in the legend. For comparison,
the case of global load-sharing, with a=0 and other parameters
being the same, is also shown �see the dotted line�. Note that the
stress is smaller than the critical stress fc=0.68 of the global load-
sharing system without noise. �b� Time evolution of the average
fraction x̄ of living cells under periodic stress, for several values of
the healing parameter a shown in the legend. The stress is given by
Eq. �17� with the peak stress f0=0.61 and frequency 
=0.049. All
data in �a� and �b� have been obtained from the same initial con-
figuration of tolerances.

FIG. 7. Power spectrum �a� P�0� at zero frequency and �b� P�
�
at the stress frequency versus the healing parameter a, obtained
from Monte Carlo calculations on the system in Fig. 6.

FIG. 8. Average fraction x̄�t� of living cells under stress given
by Eq. �17� at two different values of a and 
. The peak stress is

given by f0=0.74 while the values of h̄ and � are the same as those
in Fig. 1. The healing parameter is given by a= �a� 0.1 and �b� 0.2,
respectively.
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a�t� =
a0

2
�1 + sin 
t� , �18�

and exhibit the resulting behavior in Fig. 9.
Figure 9�a� displays the health status x̄�t� at several values

of the healing frequency 
, with �constant� stress f =0.684
and peak healing parameter a0=0.6. The organism is ob-
served to be in the unhealthy state at lower two frequencies,
while it is in the healthy state at the highest frequency. Plot-
ting the power spectrum P�0� at zero frequency against the
healing frequency 
, we make clear that the system exhibits
a transition from the unhealthy state to the healthy one as 

is increased beyond a critical value 
c �see Fig. 9�b��. When
f is slightly above fc and the healing frequency 
 is high
enough, the healing parameter a�t� grows from the minimum
before x̄ decreases much, resulting in the healthy state. This
behavior disappears when f becomes far larger than fc; this
corresponds simply to the situation that the organism may
not be restored to health by medical treatment if stress is too
large.

Our result that the health status changes rather abruptly
with the healing frequency indicates, in part, that the fre-
quency of treatment should be adjusted to the optimum in
medication: In general a high-frequency treatment is more
effective for the recovery of health, as shown in Fig. 9. How-

ever, in view of the price and possible side effects, it is
desirable to keep the treatment frequency to the minimum.
Figure 9�b� suggests that these conflicting circumstances
may be resolved by taking the optimal frequency 
o to be
slightly above the critical value 
c—e.g., 
o�0.25 in this
case.

V. SUMMARY

We have applied the dynamic model for failures to a liv-
ing organism under periodic stress. Without healing, the av-
erage fraction x̄ of intact cells, dubbed the health status, ei-
ther decays stepwise to zero or to a constant value far from
zero, depending on the peak value of the stress. When the
healing parameter a is introduced and increased from zero,
the health status x̄ exhibits oscillating behavior, resembling
periodic synchronization. It is observed that the power spec-
trum at the stress frequency increases at first with a raised,
then decreases, which manifests healing resonance. We have
also investigated the effects of stress frequency. When the
peak stress f0 is a bit larger than the critical value fc, the
health status is found to depend on the stress frequency and
the healing parameter, as well as the peak stress. Here arises
an interesting interplay of healing and stress frequency:
When healing is not active, the system tends to resist low-
frequency stress better than a high-frequency one. As healing
becomes active, on the other hand, the stress of high fre-
quency becomes more tolerable than the low-frequency one,
and the system may remain healthy if the stress frequency is
sufficiently high. Finally, we have studied the time evolution
of an organism in the case that the healing parameter varies
periodically with time and the stress f is slightly above fc. It
has been found that the system, under stress slightly above
fc, exhibits a transition from the unhealthy state to the
healthy state as the healing frequency is increased. Such de-
pendence of the health status on the healing frequency gives
interesting implications for medication, with regard to the
optimal frequency of treatment.
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